IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

On a deformation of si(2) with paragrassmannian variables

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 29 6729
(http://iopscience.iop.org/0305-4470/29/21/009)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.70
The article was downloaded on 02/06/2010 at 04:03

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gern9 (1996) 6729-6736. Printed in the UK

On a deformation of sl(2) with paragrassmannian
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Abstract. We propose a new structuté (s/(2)). This is realized by multiplying(q = e,

8 € C) by 6, whereg is a real nilpotent, paragrassmannian, variable of orgeft! = 0)

that we call the order of deformation, the limit— oo giving back the standarti, (s/(2)). In
particular, we show that for = 1 there exists a neviR-matrix associated with/(2). We also

prove that the restriction of the values of the parameters of deformation give nonlinear algebras
as particular cases.

1. Introduction

During the last few years;-deformations [1](g = €, § € C) of the universal enveloping
algebra of Lie algebras have attracted wide attention. They are indeed remarkable
mathematical structures known as Hopf algebras and they have been proved to be connected
to conformal field theory and to solvable model (see [2] and references therein).

The pioneering papers [3] devoted to the spedifj¢si(2)) case have been extended
by various authors. Let us just mention here th&€&woproposal [4] (based on generalized
nonlinear deformations) providing a new algebraic description of the Morse and modified
Poschl-Teller Hamiltonians [5]. Despite its physical interest thédkaleformation has been
rarely exploited as compared to the Drinfeld—Jimbo deformation, because of its mathematical
defect: its Hopf characteristics (coproduct, counit, antipode) have not yet been pointed out.

In this paper, we answer the following question: Is it possible to obtain the nonlinear
algebras as particular restrictions of the quantum deformation?

Our purpose is then twofold. First, we introduce the nilpotent algéfi@/(2)) by
multiplying 8 by @ is a real nilpotent, paragrassmannian, variable [6] of ordei™* = 0).
Second, we discuss the connection of this new structure to some particular nonlinear
deformations ofs/(2) whose Hopf characteristics are introduced.

In section 2, we briefly review the Drinfeld—Jimbo deformationséf2). Then, in
section 3, we introduce the quantization with one paragrassmannian variable and its Hopf
structure. The quantization with two paragrassmannian variables is given in section 4. In
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section 5, we give the connection of these structures to particular nonlinear deformations of
s1(2). Finally, we conclude in section 6 with some comments.

2. ThelU,(sl(2)) algebra

The standard Drinfeld—Jimbo deformation [1] of the Lie algetif@) generated by, J,
and J_ is characterized by the relations

gt —q7 _ sinh(H)
q—q~t  sinhs)
It is completed by the following additional operations, coproduct U, (si(2)) —

U, (s1(2)) ® U, (s1(2)), counite: U, (sl(2)) — C and the antipods: U, (sI(2)) — ,(s1(2)),
such that

[Je, J ] = [H, J.] = +2/,. 2.1)

AH)=H®1+1® H

A(Jp) =Js @12 L ed2g g,

e =1 e(Jr)=¢(H)=0

S =1 S(H)=—H S(Jy) = —e"J, (2.2)
where A ande are homomorphisms whil§ is an algebra antihomomorphism

A(ab) = A(a)A(D) e(ab) = e(a)e(b) S(ab) = S(b)S(a). (2.3)

Moreover, if m: U, (sl(2)) ® U, (s(2)) — U,(sI(2)) stands for the multiplication
mapping ofis, (sI(2)), i.e.m(a @ b) = a - b, we have
(d® AA=(AQiId)A
mid® SYA=m(SQId)A =ioe
(e ®iId)A = (i[dR e)A =id. (2.4)
These are just all the axioms of a Hopf algebra, and/g@!(2)) endowed withe, A and

S just forms a Hopf algebra.
Let us define the formal series

Ji = Zsijj) (2.5)
k=0
and
inh(H§$ o
m = ; Y (6% (2.6)

the second formula being just the result of a Taylor expansion. The geneié’i)oand H
satisfy the following commutation relations:

[H, P = +27®
2k+1

2k
DL I =gy Y IE T =0
m=0

m=0

k
Z[J(M)’ 7M1 = o, 2.7)
m=0
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Its Hopf structure is given by
AH) =1 H+H®1

k

1 —m —m m

ALY =) o (D" HT @ I + I @ H)
m=0 '

e(H)=e(J¥P)=0 e =1

k
(G =) L —
SUPY ==Y : Jk=m S(H)=—H S =1 (2.8)
=0 m:
as can be verified.

3. The U, (sl(2) algebra

Let us introduce the real nilpotent, paragrassmannian, varéabfeorderr, i.e.

o+ =0 (3.1)
being realized, in a simple way, by
O 0 --- 0
o 1 0 --- 0 3.2)
R '
0 0 1 0O

Besides this choice, we want to notice that there are other representations such as that given
by

0 => 0 (3.3)
a=1
where
(9(01))2 — O [9(‘1)’ 9(/3)] — O o # ’8 (34)
Then with equation (3.2), we propose to generalize the operators (2.5) through
JE= "smemi (3.5)
m=0
7O 0 .0
57 7O w0
_ . (3.6)
SrflJirfl) . . .

5 gy sr—lJi’*D ajj;” /O
Using the commutation relations (2.7), we thus have
[H,J]] =+2J¢ (3.7)
and

r k
[.19, Jﬁ] = 25k9k<2[1(m)’ Jik—m)]>

k=0 m=0
= Yo(H) + 02621 (H) + - - + 670357 Py (1)
lr/2]

= Z Vi (H)9% 5% (3.8)
k=0
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where ] stands for the integer part of. Defining the exponential map by

L xko*
e(x;0) = 'R (3.9
k=0 "
we can finally write
Hé$;0) —e(—HS; 0
(79,7 = e« ) — e ) [H,J]]==+2J0. (3.10)

e(8;60) —e(—=6;0)

The algebra{J/{, H} described by the commutation relations (3.10) is just the
deformation ofs/(2) with one paragrassmannian variable and is denoted/{{}:(yl(Z)).

This algebra is isomorphic @, (s/(2))/(8" U, (s1(2)), i.e.
Z/{;(sl(Z)) =U, (sl(2))/(8’+1l/lq(sl(2))).
In order to define a Hopf structure fbfq’(sl(Z)), we need the following definition

Definition 1. Let

a=apg+a0+---+a0" b=byg+bi60+---+b,06". (3.11)
The tensor product betweenandb is defined by
a®b =YY "a™ @b"o"t" (3.12)
m=1n=1
and
(a®b)(c®d) = (ac®bd). (3.13)

This operation is called the paragrassmannian tensor product.

When the paragrassmannian order> oo, this operation is equivalent to the standard
one. This paragrassmannian tensor product is compatible with

Uy (s12)QU; (s1(2)) = U] (s0(4)) (3.14)
and with the inclusion
L{;(sl(Z)) C Z/Iq’(sl(3)) Cc---C Z/lq’(sl(N -1)C Uq’(sl(N)). (3.15)

We are now able to claim that

Proposition 1. The Hopf structure associated to #¢(s/(2)) is given by
AH)=H®1+1®H

) o= (HS HS -
A(JY) = Qe 7;9 +e —7;0 ®J1
e(J) =¢e(H)=0 e() =1
S(Hy=—H S(JY) = —e(£8;0)J¢ SH=1

s (e(200)) = (000) e (M0). @19
The following axioms are then satisfied,

(Id®A)A = (AQId)A

M(Id®S)A = m(SRId)A =ioe

(e®iId)A = (id®e)A =id (3.17)
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with the coproduciA: U, (s1(2)) — u;(sl(Z))Q_Du,;(sl(Z)), counite: Uy (s1(2)) — C[#], the
antipodesS: U] (s1(2)) — Uy (sI(2)) andm: L{,;(sl(Z))Q_Z)U,;(sl(Z)) — U (s1(2)), where the
operationsA, S ande only act onH and J{©.

Let us now turn to some specific examples.

Example 1. Ther = 0 case is characterized by
6=0 70 =70
and
[H,J0] =+2J¢ 7,7 = H. (3.18)
Thus, thel/l‘?(sl(Z)) algebra is nothing but/(2), endowed as usual with
AH)=19H+H®1
AUD =] ®1+1® J] etc.

Example 2. Ther = 1 case is characterized by

(0 0 o (J2 0
9‘(1 0) and Ji_(an) 7O

and thesl(2) algebra (3.18) but now supplemented by a non-cocommutative coproduct
AH)=H®1+1QH

_ 08 08 _
AU =T <1+ ZH) + <1 - ZH) &JL. (3.19)
Example 3. Whenr = 2, i.e.

000 9 0 o
9:(1 0 o) and =11 JO o

010 5272 sJb  JO
we obtain
[H,J]]==+2J¢ (79,7 =H + 92(;(113 — H). (3.20)
The coproduct is given by
AH ) =H®1+1®H (3.21)
AU =TI <1+ %H + (92)2112) - (1 - %H + (9;)2H2> ®J2.

Such a structure is discussed in [7] in connection with the Higgs algebra, characterized by
[H, J.] = +2J. [Jo, J.]=H +cH?® (3.22)

¢ being an arbitrary constant. This algebra is of special interest as it appeared in the study
of the harmonic oscillator and the Kepler problem in a two-dimensional curved space [8].
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Example 4. Ther — oo case § is equivalent to aeal variable) is characterized by

00
‘I:i — Z Jj:m)smem

I
M 1

Jim)gm
m=0

J =T (3.23)

and
N . o &H _ g tH

[H, Ji] =+2Jy [J+, J—] = W (3-24)
where¢ = 65. We thus recover the Drinfeld—Jimbo structdfe(s/(2)) as a particular case
of U (s1(2)).

The same embedding is also present at the level of the Hopf structure with
AH)=H®1+1®H
A(Jp) =T @ yetPg
e(Ju) = e(H) =0
S(H)=—H S(Jy) = —et .. (3.25)
4. ThelU’+"2(sl(2)) algebra

q1,92

Let us now introduce, for example, two real paragrassmannian variedbesl 9, of order
r1 andr,, respectively, i.e.

ot =0 0T =0 60104 6200 = 0. 4.2
Using the Campbell-Baker—Hausdorff expansion
(expA)(expB) = expC (4.2)
where
c=atBriy 1 @yl i " (ads)" (4)
B 2 4~ (m+ 1)
(adA)"(B) =[A,[A,....[A, B]] -]
(adB)"(A) = [B,[B,....[B, Al] - -] (4.3)
we propose to define
T ZQ'"Jj(:m) (4.4)
m=0
where
528m 5 81112’11
0 = 0161 + 626 03"
“+“+2Z( Tk 22( e
exp(6181) exp(6282) = expé. (4.5)

Using (4.4), we deduce that
e(Hdy; 61)e(Hd2; 02) — e(—H d2; 02)e(—H 815 01)
e(31; 01)e(82; 62) — e(—32; B2)e(—31; 61)
[H, ]9 = £270%), (4.6)

[Jflﬁz) J(Qlﬂz)] —
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The algebrd /{2 H} described by the commutation relations (4.6) is just the quantization

of sl(2) with two paragrassmannian variables and is denoteduwj(sl(Z)). The

fjfj(sl(Z)) algebra is equipped with the following Hopf structure

AH)=H®1+1® H

- Hé Hé» HS Hé
ALy = TP @e <21 91> < 5 92) (—22; 92) e (—21; 91) Q0

() = ¢(H) =0 () =1
S(H)=—H S(1) =1 (4.7)

H51 H52 61,6 H(SZ H81
S J(91,92) — e =20 - 6, J(l z) .9 )
() e\ — 0 - ) K G
Héj, Héy Héy Hé, - Héq Hé,
A — 30 ;6 ;0 — 0 ;0 .62
<e<2 1>e<2 2)) (2 1) (2 2)®e(2 1) (2 2>
5. Connection with some nonlinear algebras

Let us take the following restriction itx; (s/(2)),

g=1 ie.g =" (5.1)
wheren characterizes the Riemann branch. We have
e(2rin®2; 0) = co2nn2; 0) +isin(2rn2; 0) (5.2)
with
[r/2] (X x2kg2k
6 1
cos(x; 0) = Z( a0
(’*1)/2*%(”(*1)” x2k+1p2%k+1
sin(x; 0) = [ L — (5.3)

] (2 + 1!

Thus, the commutation relations are written as

sin(2rnH; 0)
H,J0 =+2J¢ R A [y 4
[H, J{] Ji [J5, J2] sin2n: 0) (5.4)

Whenn — oo, we deduce
| sin(2rnH; 0) _ H,_%(H(_l)r) (5.5)
n—oo SiN(2wn; H)
and
1 ,
[H, 9] = +2]¢ [J¢, 7% = g™ 24T (5.6)

the deformation being a nonlinear one.
Now, if we take mM,ﬁ ;g(sl(Z))rz — o0 and §; = 2rin(n — o0), we deduce the
following nonlinear algebra

Hr1 _ 1)t —HHr1
[Ji, J_] = =1 [H, J.] =+J.. (5.7)
g — (=gt
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6. Conclusion

We have proposed new deformed structde@(s/(2)) and U2 (s1(2)) obtained by
paragrassmannian deformation. When the order of the paragrassmannian variable goes
to infinity, we recover the Drinfeld—Jimbo scheme of deformation.

It has also to be noticed that our proposal points out two different Hopf structures for
the same deformed algebra. In particulei2) can be associated with a cocommutative
coproduct £ = 0) or a non-commutative one & 1). Then it is possible to get a new

R-matrix given by
Ro=1®1+380(J-®@J —JL ®J-)

=U,U™, (6.1)
where
Up=10 1+ 380(J-Q J; — J, ® J-) (6.2)
by requiring
UsAr=o(a) = Ar=1(a) Uy (6.3)

for anya belonging tos/(2). It is also noticed that this matriR, satisfies the Yang—Baxter
equation. Thus it is the first solution, to our knowledge, depending on a paragrassmannian
variable.

We would like to note that the = 2 case is a particular interesting one, as already
mentioned. It is the first case where the deformation is present at the level of the algebra
and these deformations are nonlinear ones in the sense @kRdNVe have thus defined
ad-hoc coproducts, counits and antipodes for such deformations being of physical interest.

Finally, the restriction of the values of the parameters of the deformation gives some
nonlinear algebra as particular cases.
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